Altamimi, T. R. (2018). Integrated Regulation of Cardiac Fatty Acid and Glucose Oxidation. Assay: NAD/NADH in mice heart tissue.Paul, S., Gangwar, A., Bhargava, K., & Ahmad, Y. (2018). STAT3-RXR-Nrf2 activates systemic redox and energy homeostasis upon steep decline in pO2 gradient. Redox biology, 14, 423-438. Assay: NAD/NADH in sprague dewley rats tissue. Wang, W., Hu, Y., Wang, X., Wang, Q., & Deng, H. (2018). ROS-Mediated 15-Hydroxyprostaglandin Dehydrogenase Degradation via Cysteine Oxidation Promotes NAD+-Mediated Epithelial-Mesenchymal Transition. Cell chemical biology, 25(3), 255-261. Assay: NAD/NADH in mice tissue. Wang, Z., Jiang, M., Guo, X., Liu, Z., & He, X. (2018). Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Microbial cell factories, 17(1), 60. Assay: NAD/NADH in yeast cells. He, X., Wu, C., Cui, Y., Zhu, H., Gao, Z., Li, B. & Zhao, B. (2017). The aldehyde group of gossypol induces mitochondrial apoptosis via ROS-SIRT1-p53-PUMA pathway in male germline stem cell. Oncotarget, 8(59), 100128. Assay: NAD/NADH in cotton cells. Qiao, A., Jin, X., Pang, J., Moskophidis, D., & Mivechi, N. F. (2017). The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol, 216(3), 723-741. Assay: NAD/NADH in mice liver tissue. Bae, S. J., Kim, S., & Hahn, J. S. (2016). Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2, 3-butanediol dehydrogenase and expression of NADH oxidase. Scientific reports, 6, 27667. Assay: NAD/NADH in yeast cells. Bai P et al (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13(4):461-8. Assay: NAD/NADH in mouse cells. Koo BS et al (2010). Improvement of coenzyme Q(10) production by increasing the NADH/NAD(+) ratio in Agrobacterium tumefaciens. Biosci Biotechnol Biochem.74(4):895-8. Assay: NAD/NADH in yeast Agrobacterium tumefaciens. Lee M et al (2010). Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J. 24(7):2533-45. Assay: NAD/NADH in human cell. Hsu CP et al (2009). Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res. 105(5):481-91. Assay: NAD/NADH in mouse heart cardiac myocytes. Tseng HC et al (2009). Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl Environ Microbiol. 75(10):3137-45. Assay: NAD/NADH in bacteria E.coli. Clem B,et al (2008). Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 7(1):110-20. Assay: NAD/NADH in human epithelial cell. Greenall A et al (2008). A genome wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role for the NAD+ biosynthetic gene BNA2 in chromosome end protection. Genome Biol. 9(10):R146. Assay: NAD/NADH in yeast cell. Kim Y, et al (2008). Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J Bacteriol. 190(11):3851-8. Assay: NAD/NADH in bacterial E. coli. Olesen UH, et al (2008). Anticancer agent CHS-828 inhibits cellular synthesis of NAD. Biochem Biophys Res Commun. 367(4):799-804. Assay: NAD/NADH in human cell. Song HK, et al (2008). Visfatin: a new player in mesangial cell physiology and diabetic nephropathy. Am J Physiol Renal Physiol. 295(5):F1485-94. Assay: NAD/NADH in human mesangial cells. Thornburg JM et al (2008). Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res. 10(5):R84. Assay: NAD/NADH in human breast adenocacinoma cell.To find more recent publications, pleaseclick here.